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Cognitive abilities decline with age, constituting a major manifestation of aging. The quantitative biomarkers of this process, as well
as the correspondence to different biological clocks, remain largely an open problem. In this paper we employ the following
cognitive tests: 1. differentiation of shades (campimetry); 2. evaluation of the arithmetic correctness and 3. detection of reversed
letters and identify the most significant age-related cognitive indices. Based on their subsets we construct a machine learning-
based Cognitive Clock that predicts chronological age with a mean absolute error of 8.62 years. Remarkably, epigenetic and
phenotypic ages are predicted by Cognitive Clock with an even better accuracy. We also demonstrate the presence of correlations
between cognitive, phenotypic and epigenetic age accelerations that suggests a deep connection between cognitive performance
and aging status of an individual.
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INTRODUCTION
In recent decades, there has been a clear trend towards an
increase in global life expectancy. A crucial issue in extending
lifespan is to make it go with extending health span, characterized
by the maintenance of functional capabilities, physical and social
activity, and quality of life—in other words, healthy aging.
Cognitive status, including memory, thinking, motor reactions
and attention, and processing speed, plays a central role in
healthy aging. Currently, human cognitive aging remains one of
the most interesting and multidisciplinary problems. Studies of
age-related changes in the brain at the cellular and systemic levels
suggested the concept of “Cognitive aging” [1].
Cognitive decline is responsible for many difficulties even in

everyday life, affecting a person’s well-being. The decline in
cognitive abilities has been shown to begin during the second
decade of life and accelerate as the person ages [2]. However,
people of the same chronological age are heterogeneous in the
rate of cognitive decline and in the overall level of cognitive
impairment. Although age-related neurodegeneration is consid-
ered to be a part of the physiological aging process, its
acceleration is the reason for the transition from normal
functioning to mild cognitive impairment and then to dementia
[3]. Thus, changes in the rate of age-related neuronal degradation
and changes in cognitive abilities may be responsible for
interindividual differences in the manifestation, if any, of
dementias, including Alzheimer’s disease (AD), Parkinson’s disease,
small vessel disease, and other age-associated pathologies. The

ability to define and follow the individual trajectory of age-related
cognitive changes could aid to prevent and/or reduce the rate of
pathological processes. The capability to easily assess and quantify
cognitive aging can also help to identify early factors that
influence the rate of age-related neurodegeneration and serve as
a fundamental basis for the development of new diagnostic
approaches. Over the past 20 years, age-related variations in color
perception have attracted considerable attention [4, 5]. The most
pronounced age-related effects are associated with the recogni-
tion of shades: with age, the sensitivity in the short-wave range of
the spectrum decreases more significantly than in the medium-
and long-wave ranges. Thus, it becomes more difficult to
distinguish colors and perceive color contrasts [6]. Changes in
sensorimotor reactions, such as the speed and accuracy of
decision-making, are also age-specific. In particular, the study of
older adults’ decision-making behavior showed that they use
simpler, heuristic strategies [7]. In addition, recent research
indicates that response time slowing, which begins as early as
age 20, is associated with increased caution in decision-making
and slower non-decisional processes, rather than differences in
mental speed [8].
Reduced decision-making efficiency has been attributed to

cognitive limitations in information processing in older people [9]
who have also been shown to be less consistent in their choices
[10]. Biologically, these effects have been explained by the loss of
neocortical neurons, with the most pronounced atrophic changes
observed in the prefrontal cortex. There is also a decrease in the
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total number of synapses and a decrease in the production of
many neurotransmitters [11].
It has been previously demonstrated that age-related cognitive

decline, as well as several age-related pathological conditions such
as dementia, AD, Parkinson’s, and Huntington’s disease, are
associated with epigenetic age acceleration, e.g., [12]. However,
robust epigenetic markers of cognitive changes are still lacking, as
suggested for example by the lack of correlation of DNAmAge
calculated in blood by the Horvath clock with cognitive decline in
monozygotic twins [13].
Here we investigate the changes in the cognitive tests

performance with age, identify cognitive markers of age and
build machine-learning-based models of a cognitive clock. More-
over, we study the correlation of these new cognitive clocks with
several epigenetic clocks, and present evidence that the
accelerated decline of cognitive performance is linked to
accelerated aging. Finally, individuals were clustered in seven
groups according to the cognitive tests results. Two of them with
considerably better than average campimetry and sensorimotor
performance demonstrated statistically significant negative cog-
nitive age acceleration (minus 4.5–6 years), and the other two with
the considerably worse performance manifested accelerated
cognitive aging (4.5–7 years).

MATERIALS AND METHODS
The study involved 118 volunteers of both sexes, aged 19–85 years (37
males and 81 females). The exclusion criteria from the study group were
acute respiratory infection, oncology, and chronic diseases in the acute
stage. Each volunteer signed an informed consent form to participate in
the study.
The study employed three cognitive tests: 2 sensorimotor tests (SM1,

SM2) and a campimetry test (CM). We chose three different cognitive tests
that allow us to characterize the change in psychophysiological reactions
of participants from the perspective of age-related decline. Sensorimotor
tests measure the sensorimotor response and determine the degree of
preservation of brain regions, the resources of spatial and selective
attention, as well as the ability to predict and learn [14]. Computer color
campimetry measures the color difference function and quantifies
subjective psychophysiological responses. This technology makes it
possible to characterize the features of the perception of the color and
shape of objects and provides information about the level of working
memory and attention, as well as the emotional stress of the participants.
The selected tests are valid over a wide range of ages and can be applied
to participants of different ages.
Tests were performed on Web-platform-ApWay [14]. Supplementary Fig.

S1 refers to the stimuli and interface of the corresponding tests on the
platform. The detailed description of tests is given in the Supplementary
Methods.

Biological age models
The biological age was estimated based on Phenotypic Age clocks for all
samples [15]. The required hematological parameters (WBC, MCV, RDW-CV,
LYM (%), albumin, glucose, creatinine, C-reactive protein, alkaline
phosphatase) were obtained by complete blood count using a semi-
automatic analyzer Abacus Junior 3.0, and a set of biochemical parameters
using the StatFax analyzer and diagnostic kits. The group size was limited
by the requirement of simultaneous cognitive test and blood samples data
acquisition (with the further determination of biological age).
Additionally, four types of epigenetic age were calculated based on DNA

methylation analysis of blood samples: DNAmAgeHannum [16], DNAmAge
[17], DNAmPhenoAge [15], DNAmGrimAge [18].
The DNA methylation analysis of blood samples was conducted in

47 subjects (20 males and 27 females) out of the 118 subjects. Ages of the
whole dataset and subset selected for the DNA methylation analysis were
overlapped in the range from 25 to 85 years and equally distributed in that
range (Kolmogorov–Smirnov test, p value= 0.94). In addition, regardless of
sex (males and females), the ages are equally distributed also (female ages:
KS-test, p value= 0.78, male ages: KS-test, p value= 0.9). Similarly, the
cognitive test results for the whole dataset and its subset do not exhibit
differences between cognitive indices distributions (KS-test, p values in the
range [0.3; 1.0]).

Extraction of DNA from EDTA whole blood was performed using the
phenol-chloroform method. Prior to methylation assay, DNA concentration
was determined using the Qubit dsDNA BR Assay kit (Thermo Fisher
Scientific). Bisulfite treatment of 250 ng of DNA was performed using an
EpiMark bisulfite conversion kit (NEB).
For each sample, DNA methylation profiles were obtained by the

Illumina infinium 850 K DNA methylation array. Randomization was
employed in all experimental batches. Platform Illumina allows measur-
ing DNA methylation levels from a total number of 866 836 genomic
sites, with single-nucleotide resolution. DNA methylation is expressed as
β values, ranging from 0 for unmethylated to 1 representing complete
methylation for each probe. Raw data were preprocessed as follows.
First, probes with a detection p value above 0.01 in at least 10% of
samples were removed from the analysis. Second, probes with a bead
count less than three in at least 5% of samples, were removed from the
analysis. Third, all non-CpG probes were excluded from the results
[19, 20]. Fourth, SNP-related probes were removed from the analysis [20].
Fifth, multi-hit probes were removed [21]. Sixth, all probes located in
chromosome X and Y were filtered out. As a result, 733,923 probes
remained for the analysis. All samples have <10% of probes with a
detection p value above 0.01. Functional normalization of raw
methylation data was performed using the minfi R package [22].

Data analysis
Preprocessing procedures. The statistics of cognitive indices that character-
ize participant responses demonstrate broad distributions, often multimodal,
as shown in Supplementary Fig. S4. Therefore, in addition to the mean, we
calculate the minimum value, maximum value, standard deviation, median,
first and third quartiles of cognitive indices. The transformation of the 16
cognitive index series by computing statistics produced a vector of 64
cognitive quantifiers. Accordingly, each participant was characterized by a
vector of cognitive quantifiers, processed by further analysis. The full list of
cognitive quantifiers and corresponding indices are presented in Supple-
mentary Table S1 (Cognitive test indices, Cognitive quantifiers).

Analysis pipeline. The analysis pipeline consists of three parts: correlation
analysis, age prediction by machine learning, and analysis of age
accelerations. The analysis against Phenotypic Age [15], DNAmAge [17],
DNAmAgeHannum [16], DNAmPhenoAge [15], DNAmGrimAge [18], and
chronological age was performed separately. By applying linear analysis,
we identified particular age-associated quantifiers and the corresponding
cognitive indices. Selected quantifiers enabled to build prediction models
for biological and chronological ages. These steps used machine-learning
techniques. The quality of age estimation was compared across models.
Finally, we perform the correlation analysis of age accelerations.

Feature selection. First, we determined cognitive quantifiers that give a
statistically significant correlation with all considered ages. The p-value was
estimated by testing the null-hypothesis of zero Pearson correlation
coefficient ρ using Student’s t-distribution. The produced p-values were
corrected using Benjamini–Hochberg procedure [23] and a significance
threshold of 0.001 was considered.

Machine-learning models. Further, we constructed biological clocks
based on the selected cognitive quantifiers. The data was preprocessed
by subtracting the mean and normalizing by the standard deviation per
individual quantifier. To identify the best model, we examined the
following machine-learning models from the scikit-learn package [24]:
Elastic Net, Support Vector Machine (with radial basis function
as a kernel), Random Forest, Linear Model, k-Nearest Neighbors, Thiel
Sen Model.

Model selection and evaluation. The quality of predictions was evaluated
by the fivefold cross-validation. The data was divided into five equal parts,
taking into account the equal age distribution across groups using the
Stratified K-Fold algorithm [25]. The stratification algorithm requires multi-
class labels, so that the participants were distributed by age into seven
bins, ranging from 10 to 90 years old.
The choice of model parameters relied on an optimization search over a

multidimensional grid of hyperparameters appropriate for the specific model.
In addition, we chose the optimal number of top quantifiers ranked by p value
for corresponding age characteristics. The objective function was the mean
value of the explained variance (EV) computed by fivefold cross-validation.
Evaluation of the quality was based on the EV, mean absolute error (MAE)
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and median absolute error (MedAE). An optimal model that predicts age
based on cognitive quantifiers was defined as Cognitive clocks.

Biological and cognitive age acceleration analysis
To characterize the deviation of biological and cognitive ages from
chronological age we performed correlation analysis. First, we compute
age acceleration that describes deviations of the biological age from the
expected chronological age for a particular person. Next, we examined
correlations between cognitive clock acceleration and other biological
clock accelerations. Presence of this correlation indicates that devia-
tions in cognitive clocks are reflected in deviations of the biological
clocks.

Pattern clustering analysis. Decline trajectory of cognitive abilities with
age varied widely from one individual to another. We explored this
diversity by estimating differences of individual cognitive performance
among cohorts of the same age. Subjects were compared to the Gaussian-
weighted average of cognitive quantifiers over age relative to current
subject (age SD is ±7 years). Deviations of the cognitive quantifier greater
than half of Gaussian-weighted SD were considered as “better perfor-
mance” or “worse performance” depending on the direction (see Fig. 1). All
quantifiers associated with time measurement are considered as “better
performance” in case of less time spent and as “worse performance” in the
opposite case, and less mistakes is better. Both of the campimetry
quantifiers are considered as the smaller the better (the number of shade
sharpening steps to start distinguishing an object from the background dH
+ and the number of shade decay steps until the object merges with the
background dH−). In this way, subjects were identified by performance
pattern results with three possible outcomes: “better”, “worse”, “normal”.
Individuals were grouped by K-means clustering algorithm based on their
performance patterns. Finally, the association of groups with cognitive age
acceleration were probed by one-sample T test by comparing to zero
mean (no acceleration).

RESULTS
Age-associated cognitive quantifiers
We started by investigating associations between cognitive
quantifiers for individual test series (i.e., mean, standard deviation,
median, maximum, minimum values, 1st and 3rd quartiles of
cognitive indices, cf. Data Analysis) and chronological age, and
found a significant correlation (Benjamini corrected p value <
0.001, Pearson correlation) for 21 out of 64 of them (Fig. 2a and
Supplementary Table 1). They correspond to the following five
cognitive indices: the time of stimulus recognition (CM t+), the
time of stimulus hiding (CM t−, see Fig. 2b) and the first
recognized shade (CM dH+) in the CM, the fraction of falsely
rejected correct arithmetic expressions (SM1 ERR-1, see Fig. 2c) in
the arithmetic test, and the motor reaction (SM2 MR, see Fig. 2d)
in the reversed letter test. Notably, estimating the correlation
between individual cognitive quantifiers and Phenotypic Age [15]

produces much similar results to those for the chronological age,
manifesting the same cognitive indices (Fig. 2a).
DNA methylation analysis was performed on 54 subjects, i.e., a

subset of the whole dataset. The 11 quantifiers show significant
correlation (Benjamini corrected p value < 0.001, Pearson correla-
tion) with DNAmAge, nine quantifiers with DNAmAgeHannum,
five quantifiers with DNAmGrimAge, and only two quantifiers with
DNAmPhenoAge, at variance to the above results for the
chronological age. The common part of the lists is a CM t+ time
of stimulus recognition in the CM, see Fig. 2a and Supplementary
Table 1. Although the correlation between specific individual
quantifiers and epigenetic ages is greater than with chronological
age, the number of quantifiers significantly correlated with
epigenetic ages is substantially lower.

Cognitive clocks
In the next step, we build chronological age predictors based on
the top-ranked identified age-associated cognitive quantifiers by
employing different machine-learning models (cf. Data Analysis).
As a measure of model quality, we used the average EV in the
cross-validation. An optimal number of top-ranked cognitive
quantifiers was chosen based on maximizing the model quality
(See Fig. 3). The average quality of model and its standard
deviation in the cross-validation test are reported in Supplemen-
tary Table 4. Despite the presence of significant Pearson
correlation for quantifiers, the multiple linear regression model
shows a lower value of the EV (R2= 0.24) in comparison with
nonlinear models (SVM with RBF kernel—R2= 0.52, MAE= 8.62,
kNN—R2= 0.51, MAE= 8.66 and Random Forest—R2= 0.5,
MAE= 8.90), which indicates the presence of nonlinearity in the
multidimensional feature space. As a result, out of six examined
models, three nonlinear cognitive clocks stood out: SVM, NuSVM,
and k-nearest neighbors; their performance is illustrated in Fig. 4.
The least MAE of age for those models is 8.62 years and median
absolute error of age is 6.25 years. As shown in Fig. 4 the overall
quality of both models is similar on training and test datasets,
although the SVM model demonstrates a lower error and variance
in the prediction of chronological age than kNN. In this way, the
optimal model has been shown to predict chronological age
based on cognitive test results with good correspondence. In
comparison to the other biological clocks, our Cognitive clock
model shows comparable performance on the considered dataset.
The following enumeration presents MAEs of biological clocks
obtained on the studied samples: 3 years for Phenotypic Age, 6.72
years for DNAmAge, 8.2 years for DNAmAgeHannum, 11.89 years
for DNAmPhenoAge, 6.18 for DNAmGrimAge.
Based on the minimal mean and variance of MAE we chose the

SVM cognitive clock model. The trained model is publicly available
at https://github.com/mike-live/cognitive-clock. It incorporates 24
out of 64 cognitive quantifiers that are derivatives of five cognitive
indices (See Fig. 3). The CM yields time of stimulus recognition (CM
t+), time of stimulus hiding (CM t-) and the first recognized shade
(CM dH+). The arithmetic test contribution to cognitive clocks is
the fraction of falsely rejected correct arithmetic expressions (SM1
ERR-1). Additionally, the motor reactions (SM2 MR) in the reversed
letter test were used as input for machine learning.
Further, we applied the same approach of optimal model

construction for age prediction to the rest of biological clocks. The
optimal model for predicting Phenotypic Age gives a slightly more
accurate result than a model for chronological age prediction (2nd
row in Supplementary Fig. S5). Thus, for an optimal NuSVM model,
the MAE is 8.25 years, and median absolute error is 5.17 years.
Assessing of epigenetic clocks leads to more accurate results in

the terms of prediction based on cognitive quantifiers compared to
chronological age and Phenotypic Age. The three epigenetic ages
are most closely related to cognitive abilities due to the best-
performed MAE: DNAmAge gives 6.25 years, DNAmAgeHannum—
6.18 years, and DNAmGrimAge—6.61 years (corresponding median

Fig. 1 Example of moving Gaussian-weighted average and
corresponding moving standard deviation (SD) of cognitive
quantifier over age. Subjects were marked as “better performance”
(green point)—faster than average by SD, “worse performance” (red
point)—slower than average by SD, and “average performance”
(gray point).
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absolute errors in the same order: 5.08 years, 4.01 years, 5.43 years).
The prediction of the DNAmAge clock and DNAmAgeHannum clock
was constructed on the top-ranked 22 quantifiers (by correlation
with corresponding epigenetic age). Those quantifiers are similar for

both clocks and include statistics of six indices: time of stimulus
recognition (CM t+), time of stimulus hiding (CM t-) and first
recognized shade (CM dH+), and also the fraction of falsely rejected
correct arithmetic expressions (SM1 ERR-1), the sensorimotor (SM1

Fig. 2 Association of cognitive quantifiers and indices with age. a Pearson correlation coefficients resulting from the correlation of cognitive
quantifiers and each type of age. b–d Examples of cognitive quantifiers associated with age.
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SMR) and motor reaction times (SM1 MR) in the arithmetic test. The
model that predicts DNAmGrimAge uses only 13 top-ranked
features that includes the same indices except the motor reaction
time. As illustrated on Supplementary Fig. S5, epigenetic ages (3rd,

4th and 6th rows) outperform other clocks by value of MAE
estimated on outcomes of kNN model.
DNAmPhenoAge clock based on PhenotypicAge and DNA

methylation, yields to poor quality of prediction by the cognitive

Fig. 3 The optimal subset of quantifiers for the Cognitive clock based on the SVM model obtained by minimization of MAE over number
of top-ranked quantifiers. Cognitive quantifiers are ordered by their Benjamini p-values of Pearson correlation.
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quantifiers and high variation of errors in comparison with other
clocks (MAE is 9.56, median absolute error is 7.19, see 5th row in
Supplementary Fig. S5). The high error variance indicates a lack of
robustness in using DNAmPhenoAge as a cognitive age-related
measure.
Full cross-validation results of model comparison over each age-

characteristics and different approaches to feature selection are
presented in Supplementary Table 2.
It is important to note that the data analysis revealed the

presence of nonlinearity in the age-related changes of cognitive
test statistics of individuals. Despite the presence of separate age-
correlated quantifiers, the linear model for predicting the
cognitive age of an individual has low robustness due to the
high variability in cognitive abilities of the different subjects. In
contrast, cross-validation testing of nonlinear models (Support
Vector Machine, kNN, Random Forest) shows significantly lower
age prediction errors. This indicates the presence of irregular
patterns in the changes of cognitive abilities with age.
In addition, the results of the analysis suggest a considerable

improvement in the prediction of age processes by biological age
regressors, likely a consequence of closer association between
cognitive abilities with biological age rather than with
chronological age.

Correlation analysis of age accelerations
As a next step, we investigated the relationship between
epigenetic clocks, phenotypic clock and Cognitive clock. As one
would expect, all the clocks showed high correlation (ρ > 0.75)
with chronological age (Fig. 5a). The correlation between the
Cognitive clock and the other clocks is also quite high ρ ≈ 0.78
with the exception of DNAmPhenoAge clock (ρ= 0.7). On average
Cognitive clock shows slightly lower correlations to the other ages
than chronological age.
Finally, we performed a correlation analysis between biological

age accelerations and Cognitive age accelerations (cf. Data
Analysis). Medium correlation levels (ρ > 0.3) were found between
Phenotypic Age acceleration and Cognitive age acceleration. The

correlation level between epigenetic age accelerations and
Cognitive age acceleration is slightly higher and corresponds to
ρ= 0.44 for Horvath clock (DNAmAge), ρ= 0.45 for DNAmPheno-
Age and ρ= 0.36 for DNAmAgeHannum. At variance, DNAmGr-
imAge accelerations have low correlation level with Cognitive age
accelerations. All results of pairwise Pearson correlation values
between age accelerations of different types are presented in Fig.
5b. Detailed results of acceleration correlations are given in
Supplementary Table 3 and examples of corresponding linear
regressions are presented on Supplementary Fig. S6. The presence
of medium correlation between age acceleration of Cognitive
clocks and the biological clocks suggests that age acceleration in
different clocks also reflects changes in individual cognitive
abilities with respect to age.

Clustering of individual behavior patterns
First, we defined three possible outcomes of participant perfor-
mance in the particular cognitive quantifier among the similar age
participants: better than average by SD, worse than average by SD,
and the rest whose results were average. Next, we found groups of
individuals with similar performances. According to the results of
cognitive tests, all the subjects were grouped into 7 clusters by
their performance relative to similar age participants, denoted by
letters from A to G (Fig. 6). It should be noted that in all the groups
presented, women prevail as per the whole cohort. Here we
analyzed psychophysiological indices related to personal cognitive
tests: CM (dH+, dH−, t+, t−) for campimetry and SM1 (MR, SMR),
SM2 (MR, SMR) for sensorimotor tests.
Detailed explanations of participant behaviors, their age, and

sex in the seven determined groups are given in the Supplemen-
tary materials.
Overall, the goal of participants was to adapt their strategy and

parameters of their actions to maximize the number of correct
answers. Therefore, the results suggest diversity in their
approaches.
Finally, we evaluate a new measure of suggested cognitive age

by computing the corresponding cognitive age acceleration of

Fig. 4 Prediction results of Cognitive age by 2 optimal models: SVM and kNN. Panel rows corresponds to optimal models: SVM (a, b) and
kNN (c, d). Left column (a, c): prediction of chronological age by models for train and test samples; black line corresponds to the diagonal of
the first quarter. Right column (b, d): distribution of age deviations of Cognitive clock. Test set selected as the first 20% of the dataset and train
set as the remaining subjects. Such partitions were used only for visualization.
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participants. The results grouped by clustering analysis results are
shown on Fig. 6. According to the results of the acceleration of the
cognitive age of the presented groups, it is worth noting a
statistically significant accelerated aging for groups C and F (T test,
p value= 0.0051, mean=+7.2 years and p value= 0.024, mean=
+4.58 years, respectively) and, on the contrary, slow aging for
groups A and D (T test, p value= 0.0062, mean=−4.43 years and
p value= 0.0054, mean=−6.18 years, respectively). These find-
ings are consistent with the results of clustering after the
participants passed cognitive tests. In particular, Group A, which
performs excellently on cognitive tests, exhibits delayed aging
compared to Groups C and F, which perform less well on all tests
and are characterized by accelerated aging. A similar result of the
correspondence of the obtained clusters and the acceleration of
cognitive age for groups B, C, F, which show less successful results
in passing tests compared to group D, which demonstrated
delayed aging and good results in all tests. Groups E and G did not
show significant changes in age acceleration (T test, p value=
0.399 and 0.822, respectively).
However, no statistically significant relationships were found

between the groups in terms of chronological age (Supplementary
Fig. S7), and different types of biological age. Biological age
accelerations did not show statistically significant differences too
(T test, p value > 0.05).

DISCUSSION
Currently, there is no doubt that the aging processes inter alia
affect human cognitive abilities. Even with physiological aging,
there is a decrease in reaction speed, while intellectual abilities,
such as conceptual thinking ability, generalization, memory
reconsolidation, and spatial orientation, can remain at a high
level. Biologically, physiological aging is accompanied by age-
related neurodegeneration (a decrease in the number of neurons
in the brain), impaired energy metabolism, and degradation of
astrocytes, which can be considered a factor in reducing the
number and quality of the pool of synaptic contacts. The causes

Fig. 5 Correlation analysis of ages and age accelerations. Pairwise correlations between ages (a) and age accelerations (b). The cell of
heatmaps shows the Pearson correlation coefficient between different types of ages and age accelerations.

Fig. 6 Grouping subjects by similarity of cognitive test results.
Rows of the table (a) correspond to subjects, columns correspond to
cognitive test quantifiers, colors describes the performance of
participant relative to others close in age: green—performance is
better than average by half SD, red—performance is worse than
average by half SD, white—performance like an average. A–G is
labels of identified groups. The bottom b shows cognitive age
acceleration changes in corresponding groups.
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of systemic changes include atherosclerosis, the persistence of
senescent cells in neuronal circuits, a body–brain trophic
interactions, and lifespan gut dysbiosis [26]. However, the rate of
age-related brain changes varies across individuals and does not
correlate with the general state of the body. A fundamental
question remains: given the huge variability of individual brain
developmental tracks, are there cognitive indicators correlating
with the biological and chronological age of an individual? We
have used two methods for determining biological age, the
correlation of the indicators of cognitive tests and biological age.
The first method is determining the deviation of biological age
from chronological age by a set of biochemical and hematological
markers [15]. The second method is determining biological age by
the level of DNA methylation, i.e. epigenetic age. It is known that
the genomic DNA methylation landscape changes with age
[16, 27, 28] and DNA methylation (compared for example to
telomere length measurement) allows determining the biological
age of an individual with an accuracy of ±5 years [29]. The
maximum correlation coefficients between epigenetic age and
cognitive skills were obtained for some indicators of computer
campimetry and sensorimotor reactivity tests: visual stimulus
recognition time (CM t+) and total sensorimotor reaction time
(SMR), respectively. Contrary to our expectation, the indicators
related to the psycho-emotional sphere and color perception
showed the highest correlation between chronological, biological,
and epigenetic age. At the same time, the indicators that directly
characterize logical thinking and the speed of the sensorimotor
reaction were not so significant in our studies. This fact is of
fundamental importance since our study aimed to identify
indicators of age-related physiological changes.
Based on this, age-related changes in color perception can be

explained by an increase in the proportion of neurons with
somatic mutations caused by epigenetic drift in the corresponding
neural networks [30, 31]. With aging, structural and functional
losses in the organization of the receptor apparatus of neurons,
channel proteins, enzymes, mediator peptides, etc., are inevitable.
Obviously, as the biological age of an individual increases, these
disorders have more negative effects on primary cognitive
functions: sensory, perceptual, mnestic ones.
The direct correlation of epigenetic age with the time of the

sensorimotor reaction may indicate a natural decrease in the speed
of information processing in the nervous system with age, and the
revealed correlation between the methylation level and the latency
period of pattern recognition in the computer CM is likely caused
by a decrease in the efficiency of signal extraction from noise.
The influence of age-related processes on the cognitive status

of a person makes it possible to construct a cognitive clock on the
basis of chronological and different types of biological age. The
most accurate predictions of epigenetic age using the cognitive
status of a person were achieved for DNAmAge [17] and
DNAmAgeHannum [16], constructed by the chronological age
fitting. On the other hand, biological clock models that take into
account the results of the blood biochemistry, smoking, and death
risk markers show less accurate prediction results from the
perspective of cognitive quantifiers.
The estimated cognitive age of subjects usually does not

precisely coincide with the chronological age. Such arising
deviations can be partly explained by deviations of epigenetic
age that occur due to alterations in the methylation profile. The
results suggest that cognitive age acceleration is mostly asso-
ciated with the epigenetic age acceleration estimated by Horvath
Clock and less associated with Phenotypic Age acceleration
derived from blood chemistry.
This finding in turn reinforces the hypothesis that changes in

the human cognitive system are not only linked with the
processes that determine blood biochemistry but also reflected
in the age-associated regions of the DNA methylation profile.

Remarkably, the clustering analysis reveals seven groups in the
corresponding performances relative to the similar age indivi-
duals. Comparing the selected clusters with each other, it is
interesting to note the difference in the results between groups D
and G, in which the difference in age reaches 10 years. According
to literature data, it is known that in middle age women have
better memory and information processing speed than men. This
female advantage decreases with age (women show faster
cognitive decline) and increases in later age cohorts [32]. It is
important to take into account that a large number of factors can
influence the decline in cognitive functions with respect to age. In
particular, some studies report an association between cardiovas-
cular diseases and their risk factors with cognitive decline in
middle age [33].
In addition, the intellectual characteristics of a person, including

the level of intelligence and cognitive reserve (the level of
education and the complexity of the profession), affect the
accuracy of the task [34], as well as physical activity, which
correlates with a decrease in cognitive functions in age aspect
[35].
Finally, a recent multi-omics study of one of us in young adults

shows that in each individual the different organs and systems of
the body age at different rates [36], concordantly with the earlier
findings for mice [37].
Although the constructed cognitive clock has already proved

a robust and powerful tool, the study is not free from
limitations. First, the size of the cohort should be substantially
increased, improving the model performance and decreasing its
error. Another potential confounding factor that should be
rectified in the future is the prevalence of females over males in
the collected dataset, although a statistically signifi
cant difference between the male and female test results is
not currently found.
We expect that the proposed method of cognitive age

estimation, beside revealing markers of accelerated aging, has a
potential for assessing age-related acceleration associated with
the early manifestation of neurodegenerative diseases.
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